Investigadores de Columbia Engineering y la Universidad de Pittsburgh han desarrollado un sistema de alerta temprana sensible y específico para predecir la ECN en bebés prematuros antes de que ocurra la enfermedad. El prototipo predice NEC de forma precisa y temprana, utilizando características del microbioma de las heces combinadas con información clínica y demográfica. El estudio piloto se presentó virtualmente el 23 de julio en ACM CHIL 2020.
"Es sorprendente cómo podemos utilizar el aprendizaje automático para evitar que esto les suceda a los bebés, "dijo el coautor del estudio, Ansaf Salleb-Aouissi, profesor titular de disciplina del departamento de informática de Columbia Engineering y especialista en inteligencia artificial y sus aplicaciones a la informática médica. "Analizamos los datos y desarrollamos una herramienta que puede ser realmente útil, incluso para salvar vidas ".
Si los médicos pudieran predecir con precisión la ECN antes de que el bebé realmente se enferme, hay algunos pasos muy simples que pueden tomar; el tratamiento podría incluir detener la alimentación, administrar líquidos por vía intravenosa, y comenzar con antibióticos para prevenir los peores resultados, como una discapacidad a largo plazo o la muerte ".
Thomas Hooven, Autor principal del estudio y profesor asistente, Universidad de Pittsburg
Hooven quien comenzó su colaboración con Salleb-Aouissi cuando era profesor asistente de pediatría en la División de Neonatología-Perinatología del Centro Médico de la Universidad de Columbia. Ahora es profesor asistente de pediatría en la División de Medicina del Recién Nacido de la Facultad de Medicina de la Universidad de Pittsburgh.
En la actualidad, no existe una herramienta para predecir qué bebés prematuros contraerán la enfermedad, y, a menudo, la ECN no se reconoce hasta que es demasiado tarde para intervenir eficazmente. La ECN es la emergencia intestinal más común entre los bebés prematuros. Se caracteriza por una necrosis intestinal rápidamente progresiva, bacteriemia, acidosis, y altas tasas de morbilidad y mortalidad.
Las causas de la ECN no se comprenden bien, pero varios estudios se han centrado en cambios en el microbioma intestinal, las bacterias en el intestino cuya composición se puede determinar a partir de la secuenciación del ADN de pequeñas muestras de heces.
Los investigadores plantearon la hipótesis de que un enfoque de aprendizaje automático para el modelado clínico, demográfico, y los datos del microbioma de los pacientes prematuros podrían permitir la discriminación de los pacientes con alto riesgo de ECN mucho antes del inicio de la enfermedad clínica, lo que permitiría una intervención temprana y la mitigación de complicaciones graves.
Hooven, Salleb-Aouissi, y Lin utilizaron datos de un estudio clínico de los NIH de 2016 de bebés prematuros cuyas heces se recolectaron en varias UCI neonatales estadounidenses entre 2009 y 2013. El equipo examinó 2, 895 muestras de heces de 161 bebés prematuros, 45 de los cuales desarrollaron NEC.
Dada la complejidad de los datos del microbioma, los investigadores realizaron varios pasos de preprocesamiento de datos para reducir su dimensionalidad, y abordar la naturaleza composicional y jerárquica de estos datos para aprovecharlos para el aprendizaje automático.
"NEC representa una aplicación excelente desde la perspectiva del aprendizaje automático, ", dijo Salleb-Aouissi." Las lecciones que hemos aprendido de nuestra nueva técnica podrían traducirse en otros conjuntos de datos genéticos o proteómicos e inspirar nuevos algoritmos de aprendizaje automático para conjuntos de datos de atención médica ".
El equipo evaluó varios métodos de aprendizaje automático para determinar la mejor estrategia para predecir NEC a partir de datos del microbioma. Encontraron un rendimiento óptimo de un enfoque de aprendizaje de instancias múltiples (MIL) basado en la atención.
Dado que los microbiomas humanos están sujetos a cambios, los métodos MIL abordan el aspecto secuencial del problema. Por ejemplo, en los primeros 20 días después del nacimiento de un bebé, El microbioma del bebé sufre un cambio drástico. Muchos estudios han demostrado que los bebés con una mayor diversidad de microbiomas suelen estar más sanos.
"Esto nos llevó a pensar que los cambios en la diversidad del microbioma pueden ayudar a explicar por qué algunos bebés tienen más probabilidades de enfermarse por ECN". "dijo Adam (Yun Chao) Lin, estudiante de maestría en ciencias de la computación y coautor del estudio cuyo trabajo en este proyecto lo impulsó a realizar ahora un doctorado.
En lugar de ver las muestras de microbioma de un bebé como independientes, el equipo representó a cada paciente como una colección de muestras y aplicó mecanismos de atención para aprender las complejas relaciones entre las muestras. El algoritmo de aprendizaje automático "mira" cada bolsa e intenta adivinar a partir de su contenido si el bebé está afectado o no.
En ensayos repetidos, la capacidad del modelo para distinguir a los niños afectados de los no afectados tenía un buen equilibrio de sensibilidad y especificidad. "El área bajo la curva ROC (AUC) es de aproximadamente 0,9, lo que demuestra lo buenos que son nuestros modelos para distinguir entre pacientes afectados y no afectados, "Señaló Salleb-Aouissi.
"El nuestro es el primer sistema eficaz para un modelo de aprendizaje automático clínicamente aplicable que combina microbioma, demográfico, y datos clínicos que se pueden recopilar y monitorear en tiempo real en una UCI neonatal. Estamos entusiasmados con la posibilidad de ampliar su aplicabilidad a una nueva área de monitorización predictiva en medicina ".
Los investigadores ahora están desarrollando una plataforma de prueba independiente no invasiva para la identificación precisa de bebés con alto riesgo de ECN antes de la aparición clínica. para prevenir los peores resultados. Una vez que la plataforma esté lista, realizarán un ensayo clínico aleatorizado para validar las predicciones de su técnica en una cohorte de UCI neonatal en tiempo real.
"Por primera vez puedo imaginar un futuro en el que los padres de bebés prematuros, y sus equipos médicos, ya no vive con el miedo constante de NEC, "dijo Hooven.